Refine Your Search

Topic

Search Results

Technical Paper

Insightful Representations of Roll Plane Model Stability Limits

2006-04-03
2006-01-1284
Yaw and roll stability limits are derived for three quasi-static roll plane models: rigid vehicle, suspended vehicle, and compliant tire vehicle. A generalized stability equation is identified that fits the stability limits for each model. This generalized stability equation leads to the definition of two new parameters referred to as the generalized superelevation and generalized center of gravity height. These parameters are shown to be physically meaningful. The use of linearizing assumptions is minimized and road superelevation is included, resulting in a more complete equation for each stability limit. Each derived stability limit is then compared and contrasted to the typical representations found in the literature.
Technical Paper

Issues on Load Availability and Reliability in Vehicular Multiplexed and Non-Multiplexed Wiring Harness Systems

2003-03-03
2003-01-1096
In military vehicles reliability can sometimes be a more important issue than cost. With that in perspective, this paper discusses the load availability and reliability issues in automotive multiplexed wiring harness systems, which are potentially useful in the military, and compares the same with a regular non-multiplexed system. For that purpose, a figure of merit or metric is introduced, and the load availability is described in terms of this metric, which depends on the architecture chosen.
Technical Paper

A Study on Tire Non-Steady State Cornering Characteristics Using Experimental Modal Parameters

2000-03-06
2000-01-0362
Based on the modeling of tire vertical characteristics and steady state cornering properties, the model of tire nonsteady cornering is established in this paper using the tire modal parameters extracted experimentally. The dynamic deformation of tire footprint and the influence of tire width for self-aligning torque are taken into account. The footprint is segmented and the influence of speed on non-steady characteristics is included. The analytical formulae for calculation of transfer-function of lateral force and self-aligning torque with respect to lateral displacement and yaw angle are derived. The non-steady characteristics of tire under different loads can be calculated. The calculated results are consistent with the experimental results in the literature. This shows that the tire nonsteady model can be established conveniently using experimental modal parameters. The dynamic characteristics of tires under different working conditions can be calculated directly.
Technical Paper

Analysis and Optimization of Seat and Suspension Parameters for Occupant Ride Comfort in a Passenger Vehicle

2018-04-03
2018-01-1404
This study presents a methodology for comparative analysis of seat and suspension parameters on a system level to achieve minimum occupant head displacement and acceleration, thereby improving occupant ride comfort. A lumped-parameter full-vehicle ride model with seat structures, seat cushions and five occupants has been used. Two different vehicle masses are considered. A low amplitude pulse signal is provided as the road disturbance input. The peak vertical displacement and acceleration of the occupant’s head due to the road disturbance are determined and used as measures of ride comfort. Using a design of experiments approach, the most critical seat cushion, seat structure and suspension parameters and their interactions affecting the occupant head displacement and acceleration are determined. An optimum combination of parameters to achieve minimum peak vertical displacement and acceleration of the occupant’s head is identified using a response surface methodology.
Technical Paper

Corrosion-Fatigue Modeling and Materials Performance Ranking

2018-04-03
2018-01-1409
Corrosion-fatigue (CF) and stress corrosion cracking (SCC) have long been recognized as the major degradation and failure mechanisms of engineering materials under combined mechanical loading and corrosive environments. How to model and characterize these failure phenomena and how to screen, rank, and select materials in corrosion-fatigue and stress corrosion cracking resistance is a significant challenge in the automotive industry and many engineering applications. In this paper, the mathematical structure of a superposition-theory based corrosion-fatigue model is investigated and possible closed-form and approximate solutions are sought. Based on the model and the associated solutions and test results, screening and ranking of the materials in fatigue, corrosion-fatigue are discussed.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
X